Catatan Singkat

Situs ini ditujukan supaya soal-soal olimpiade astronomi tidak lagi menjadi sesuatu yang menakutkan bagi para peserta, dan supaya nilai-nilai peserta dalam olimpiade astronomi bisa semakin meningkat, artinya pengetahuan astronomi semakin berkembang di Indonesia.

Pembahasan soal-soal olimpiade dengan sengaja dibuat panjang-panjang dengan maksud untuk menjelaskan teori yang mendasari soal tersebut sehingga para pelajar yang masih baru dalam astronomi dapat lebih memahami soal dan teori dasarnya dengan lebih baik.

Kepada seluruh pengunjung yang berkunjung, semua file dalam situs ini silahkan di copas, di republish dan kalau ada yang salah supaya dikoreksi dan saya diberitahu supaya kesalahan yang ada bisa diminimalisir. Semoga situs ini bisa berguna.


Salam Astronomi

Minggu, 06 Februari 2011

Kepler - Solusi

Kepler - Soal

Coba anda kejakan soal mengenai Hukum Kepler di bawah ini, baru boleh lihat solusinya

1. (SOK 2009) Jika jarak terdekat komet Halley ke matahari adalah 8,9 x 10^10 m, dan periodenya 76 tahun, maka eksentrisitasnya adalah …
A. 0,567
B. 0,667
C. 0,767
D. 0,867
E. 0,967

2.(SOP 2007) Sebuah asteroid mempunyai setengah sumbu panjang elips a = 2,5 SA. Semester I tahun 2007 ia berada di perihelion. Kapankah ia berada di aphelion ?

3. Pada suatu saat jarak sudut antara Matahari dan planet Venus (elongasi) sama dengan 30 derajat. Diketahui orbit Venus 0,72 AU, berapakah jarak Venus dari Bumi saat itu? (Asumsikan orbit lingkaran)

4.(OSN 2007) Mars mempunyai dua buah satelit Phobos dan Deimos. Jika diketahui Deimos bergerak mengelilingi Mars dengan jarak a = 23490 km dan periode revolusinya P = 30jam 18 menit. Berapakah massa planet Mars bila dinyatakan dalam satuan massa Matahari ? Jika Periode revolusi Phobos 7jam 39menit, berapakah jaraknya dari Mars?

5.(SOK 2009) Callisto yang merupakan bulannya planet Jupiter, mengedari planet Jupiter pada jarak 1,88 juta km dan dengan periode 16,7 hari. Apabila massa Callisto diabaikan karena jauh lebih kecil daripada massa Jupiter, maka massa planet Jupiter adalah …
A. 10,35 x 10^-4 Massa Matahari
B. 9,35 x 10^-4 Massa Matahari
C. 8,35 x 10^-4 Massa Matahari
D. 7,35 x 10^-4 Massa Matahari
E. 6,35 x 10^-4 Massa Matahari

Solusinya...

HUKUM KEPLER 2 & 3 – Materi

Hukum Kepler 2
Suatu garis khayal yang menghubungkan matahari dengan planet menyapu luas juring yang sama dalam selang waktu yang sama


Hukum Kepler yang kedua memberikan implikasi mengenai kecepatan planet yang berbeda-beda pada saat mengelilingi matahari. Jika jarak planet ke matahari dekat maka kecepatannya besar dibandingkan ketika jaraknya dekat

Hukum Kepler 3
Kuadrat periode revolusi planet sebanding dengan pangkat tiga setengah sumbu panjang orbitnya untuk semua planet
Jika diubah kedalam rumus matematik maka persamaannya menjadi :


Atau


Dimana T adalah waktu yang diperlukan oleh planet untuk mengelilingi matahari (disebut periode planet) dan a adalah setengah sumbu panjang orbit : a = (perihelion + aphelion)/2.
Jika hukum ini diterapkan pada data planet-planet, maka kita akan peroleh tabel berikut ini :


Perbandingan yang tetap dalam Hukum Kepler 3 memang berlaku untuk tiap planet.
Sekitar setengah abad kemudian, ditahun 1687, Newton merumuskan Hukum Gravitasi Universal melalui persamaan :


Melalui mengotak-atik persamaannya ini, ternyata kita dapat menghasilkan ketiga Hukum Kepler, sehingga bisa dikatakan bahwa Hukum Kepler adalah kasus dari Hukum yang lebih universal, yaitu Hukum Gravitasi. Bahkan konstata perbandingan planet dapat ditentukan dari Persamaan Gravitasi ini. Karena itu Hukum Kepler 3 yang lengkap adalah :


Dimana G adalah konstanta gravitasi (yang nilainya ditentukan sekitar seabad kemudian (1798) oleh Cavedish, G = 6,672 x 10^-11 Nm^2kg^-2) dan M1 maupun M2 adalah massa kedua benda yang saling berinteraksi dengan gaya gravitasi.

Dalam soal-soal olimpiade, jarang sekali digunakan satuan MKS (meter, kilogram, sekon), tetapi menggunakan satuan-satuan yang biasanya dipakai dalam astronomi. Pada soal-soal dengan kasus Hukum Kepler, maka jenis soal yang sering muncul ada tiga tipe, yaitu :

Soal Tipe 1 : Benda pertama (sebagai pusat) adalah matahari dan benda yang mengorbit adalah planet, asteroid, komet atau pesawat ruang angkasa. Untuk jenis tipe 1 ini satuan yang digunakan biasanya jarak dalam SA (Satuan Astronomi) dan waktu orbit/periode dalam tahun. Jika demikian halnya, maka rumus Kepler 3 dapat menjadi sangat sederhana, yaitu :


Dan ternyata konstanta di suku sebelah kanan dengan ‘ajaibnya’ memiliki nilai sama dengan 1, maka :


Soal Tipe 2 : Benda pertama adalah planet (yang ada di tata surya) dan benda kedua adalah satelit alamnya atau satelit buatan yang mengorbit planet tersebut. Satuan yang biasanya dipakai untuk soal jenis ini adalah massa planet dalam massa matahari, periode orbit dalam hari dan jarak dalam km. Untuk tipe ini rumus Kepler 3 bisa diubah menjadi :


Soal Tipe 3 : Benda yang terlibat adalah dua buah bintang dalam sistem bintang ganda. Untuk kasus bintang ganda ini biasanya massa bintang dalam massa matahari dan periode orbit dalam tahun, maka rumus Kepler 3-nya sama saja dengan soal tipe 1.
Jika ternyata ada soal tentang Hukum Kepler 3 yang bukan tipe-tipe di atas, maka haruslah menggunakan rumus Kepler 3 yang aslinya.
Supaya lebih jelas lagi, silahkan mengerjakan soal-soal olimpiade tentang Hukum Kepler yang ada disini.

Sabtu, 05 Februari 2011

HUKUM KEPLER 1 - Materi

Johannes Kepler (1571-1630), adalah seorang astronomi berkebangsaan Jerman yang berguru pada Tycho Brahe (1546-1602). Karir astronominya sebagian besar dihabiskan untuk mengutak-atik data peninggalan gurunya.



Tycho Brahe adalah seorang bangsawan Denmark yang memiliki hidung logam, yang bukan dalam makna kiasan, tetapi hidungnya memang dari logam, hal ini dikarenakan hidungnya pernah hilang dalam suatu duel sehingga diganti dengan logam. Raja Frederick II menghadiahi Tycho sebuah pulau kecil bernama Hveen yang tidak disia-siakan olehnya. Brahe membangun sebuah observatorium yang terbaik pada saat itu, dilengkapi dengan peralatan yang dapat mengukur posisi benda langit dengan akurat, sampai ketelitian 2 menit busur. Inilah pekerjaan Tycho Brahe, yaitu mengumpulkan data benda langit dari tahun 1576 -- 1597.

Tycho Brahe meninggalkan sekumpulan besar data pengamatan yang akurat tentang posisi benda-benda langit, terutama posisi 5 planet yang tampak dengan mata telanjang, yaitu Merkurius, Venus, Mars, Jupiter dan Saturnus. Data-data inilah yang diolah dengan oleh Kepler selama bertahun-tahun. Pekerjaan yang tampak sangat membosankan ini – mengutak-atik ratusan bahkan ribuan angka – ternyata menghasilkan sesuatu yang luar biasa. Dibalik angka-angka tersebut Kepler menemukan suatu rahasia alam yang tersembunyi. Akhirnya nama Kepler diabadikan dalam tiga hukum alam yang ditemukannya melalui ‘otak-atik’ angka tersebut. Kedua hukum yang pertama dipublikasikan pada tahun 1609 dan Hukum yang ketiga muncul 9 tahun kemudian (1618)

HUKUM KEPLER 1
Planet mengelilingi matahari dalam orbit elips dimana matahari berada pada salah satu titik fokusnya



Penjelasan lebih lengkap mengenai orbit elips dapat dipelajari disini. Melalui Hukum Gravitasi yang ditelurkan oleh Newton, diketahui bahwa interaksi gravitasi yang terjadi antara kedua benda akan menghasilkan lintasan yang terletak pada bidang datar dan bentuk lintasan orbit akan bervariasi mengikuti keluarga irisan kerucut, yaitu: lingkaran, elips, parabola atau hiperbola. Perbedaan berbagai lintasan ini di-karakteristik-kan dengan nilai eksentrisitas orbit (e)



Melalui hukum ini juga diketahui bahwa yang bergerak ternyata bukan hanya satu benda saja, tetapi kedua benda yang berinteraksi akan saling mengorbit dengan lintasan masing-masing berbentuk lintasan kerucut dimana yang terletak pada focus masing-masingorbit adalah titik pusat massa kedua benda tersebut.



Untuk kasus Tata Surya, dimana planet-planet mengorbit matahari sebagai pusatnya, hal ini terjadi karena massa matahari jauh lebih besar dari pada massa planet-planet, bahkan kalau seluruh anggota Tata Surya digabungkan, massanya masih jauh lebih kecil daripada massa matahari, sehingga dapat dikatakan bahwa pusat massa tata surya terletak pada matahari itu sendiri, maka matahari terletak pada fokus semua orbit anggota tata surya

HUKUM KEPLER 2 & 3 …

Selasa, 01 Februari 2011

BESARAN-BESARAN DASAR ELIPS - Solusi

Ini solusi dari soal-soal elips

BESARAN-BESARAN DASAR ELIPS - Soal

Coba dulu mengerjakan soal-soal ini baru lihat jawabannya, kalo bingung boleh lihat materi elips

1. Perbandingan diameter sudut suatu bintang saat suatu planet di titik perihelion dan saat di titik aphelion adalah 50 : 48. Eksentrisitas orbit planet mengelilingi bintang adalah ….
A. 0,020
B. 0,018
D. 0,012
C. 0,015
E. 0,010

2. (SOK 2009) Jarak planet Merkurius pada titik perihelionnya adalah 0,341 SA dari Matahari dan setengah sumbu panjangnya adalah 0, 387 SA. Luas daerah yang disapunya dalam satu periode adalah …
A. 0,467 SA2
B. 0,312 SA2
C. 0,104 SA2
D. 0,213 SA2
E. 0,621 SA2

3. (SOP 2007) Bila diketahui eksentrisitas orbit bumi mengelilingi Matahari adalah 0.017 maka perbandingan diameter sudut Matahari saat Bumi di titik Aphelion, θA, dan saat Bumi di Perihelion, θP, θA/θP, adalah …
A. 967/1000
B. 17/1000
C. 983/1000
D. 34/1000
E. 1,00

Solusi soal-soal di atas...

BESARAN-BESARAN DASAR ELIPS - Materi

Elips adalah suatu bentuk yang berasal dari penampang sebuah kerucut yang diiris secara miring dan dalam astronomi adalah salah satu hasil yang alami dari gerakan sebuah benda jika benda tersebut berinteraksi dengan benda lain melalui gaya gravitasi. Hasil lintasan elips ini bisa diperoleh dengan ‘mengutak-atik’ hukum Gravitasi Newton yang ditelurkan oleh Sang Jenius ini pada tahun 1687, meskipun orang sudah mengetahui hal ini sebelumnya sejak tahun 1609 melalui analisis Johannes Keppler yang sangat teliti terhadap data pengamatan 5 planet dari Tycho Brahe dan diwujudkan dalam ketiga hukum Keppler yang sangat terkenal itu.
Hukum Keppler yang pertama secara khusus berbicara mengenai orbit planet yang berbentuk elips dengan matahari berada pada salah satu titik fokusnya. Kesimpulan yang berdasarkan data pengamatan ini dengan berani dinyatakan oleh Keppler sebagai salah satu hukum dalam alam semesta dan memang perkembangan lebih lanjut mendukung pernyataan ini, hanya saja ternyata lintasan benda langit tidak selalu berbentuk elips, bentuk-bentuk irisan kerucut yang lainpun ternyata dapat dimiliki oleh sebuah benda langit.

Ciri khas dari sebuah irisan kerucut dinyatakan oleh besaran eksentrisitas (e) yang besarnya menyatakan bentuk irisannya :

Jika e = 0 maka bentuk irisan kerucutnya adalah lingkaran
Jika 0 < e <1 maka bentuk irisan kerucutnya adalah elips
Jika e = 1 maka bentuk irisan kerucutnya adalah parabola
Jika e > 1 maka bentuk irisan kerucutnya adalah hiperbola

Lintasan dari sebuah komet meskipun berbentuk elips, tetapi memiliki nilai e yang hampir mendekati 1 sehingga bisa didekati dengan lintasan parabola. Lintasan meteor yang memasuki bumi dapat dianalisis dengan menggunakan lintasan hiperbola, lintasan venus mengelilingi matahari dalam beberapa kasus dapat dianggap sama dengan lintasan lingkaran karena nilai e venus yang mendekati nol (e venus = 0,0068).
Dengan demikian dinamika orbit tidak bisa dipisahkan dari bentuk irisan kerucut dan dalam olimpiade astronomi banyak soal yang berkaitan dengan lintasan elips, karena itu sangat perlu kita mengenal beberapa istilah dan besaran-besaran dari orbit elips ini. Perhatikan gambar elips di bawah ini :



Matahari terletak di salah satu fokus, sedangkan fokus yang lain disebut vacant focus (fokus kosong).
Sepanjang planet mengelilingi orbitnya, maka jarak planet ke matahari (r) selalu berubah
Perihelium adalah titik terdekat planet dari matahari dengan rumus : Pe = a + c = a (1 + e)
Aphelium adalah titik terjauh planet dari matahari dengan rumus : Ape = a – c = a (1 – e)
Eksentrisitas (e) didefinisikan sebagai perbandingan antara jarak fokus ke pusat elips (c) dibagi setengah sumbu panjang elips (a). Jika fokus tepat ada di pusat elips, maka c = 0 dan e = 0, yaitu orbit lingkaran

Dengan memperhatikan gambar dan keterangan tentang elips di atas, cobalah untuk mengerjakan soal-soal seleksi olimpiade astronomi disini.